宋永利
姓名:宋永利
职称:教授
教学与课程:
本科课程:常微分方程、数理方程、线性代数
研究生课程:常微分方程定性理论、时滞微分方程的稳定性与分支理论、反应扩散方程的分支理论导引、生物数学
学术交流:
1. 举办国际学术会议:“The Thirteenth International Conference on Recent Advances in Applied Dynamical Systems”, Hangzhou, China, on June 8-10, 2019。
2. 举办国内学术会议:“2017(杭州)华东地区动力系统前沿问题研讨会”,杭州,2017年5月5-7日。
3. 2016年7月1-5日参加在美国奥兰多举办的“The 11th AIMS Conference on Dynamical Systems, Differential Equations and Applications”国际学术会议,并做学术报告。
4. 2018年6月8-10日参加重庆师范大学举办的国际学术会议“The Twelfth International Conference on Recent Advances in Applied Dynamical Systems”,并做学术报告。
5. 2020年11月23-27日参加上海交通大学举办的国际学术会议“International Conference on Dynamical Systems and Applications”,并做学术报告。
6. 2021年4月9-11日参加长沙理工大学举办的国际学术会议“ 2021 年微分方程理论与动力系统国际会议”,并做学术报告。
7. 2021年7月22-25日参加长江大学举办的国际学术会议“The 7th International Workshop on Biomathematics Modelling and Its Dynamical Analysis”,并做学术报告。
学术研究:
[1] Yongli Song, Y.Peng, T.Zhang, The spatially inhomogeneous Hopf bifurcation induced by memory delay in a memory-based diffusion system. Journal of Differential Equations, (2021) accepted.
[2] Q. Shi, J.Shi, Yongli Song, Effect of spatial average on the spatiotemporal pattern formation of reaction-diffusion systems. Journal of Dynamics and Differential Equations, (2021) DOI:10.1007/s10884-021-09995-z.
[3] W.Zuo,Yongli Song, Stability and Double-Hopf bifurcations of a Gause-Kolmogorov-type predator-prey system with indirect prey-taxis. Journal of Dynamics and Differential Equations, (2020) DOI:10.1007/s10884-020-09878-9.
[4] Yongli Song, S.Wu, H.Wang, Spatiotemporal dynamics in the single population model with memory-based diffusion and nonlocal effect. Journal of Differential Equations, 267 (2019) 6316-6351.
[5] Yongli Song, H.Jiang, Q.X.Liu, Y. Yuan. Spatiotemporal Dynamics of the Diffusive Mussel-Algae Model Near Turing-Hopf Bifurcation. SIAM Journal on Applied Dynamical Systems, 16(4) (2017) 2030-2062.
[6] Q.Shi, J. Shi, Yongli Song,Hopf bifurcation in a reaction–diffusion equation with distributed delay and Dirichlet boundary condition. Journal of Differential Equations, 263(10) (2017) 6537-6575.
[7] Yongli Song, X.Tang, Stability, Steady-State Bifurcations, and Turing Patterns in a Predator–Prey Model with Herd Behavior and Prey-taxis. Studies in Applied Mathematics. 139(3) (2017) 371-404.
[8] Yongli Song, T.Zhang, Y.Peng, Turing-Hopf bifurcation in the reaction-diffusion equations and its applications, Communications in Nonlinear Science and Numerical Simulation 33 (2016) 229–258.
[9] Yongli Song, J. Xu, Inphase and antiphase synchronization in a delay-coupled system with applications to a delay-coupled FitzHugh-Nagumo system, IEEE Transactions on Neural Networks and Learning Systems 23 (2012) 1659-167.
[10] Yongli Song, M.O.Tade,T. Zhang,Bifurcation analysis and spatio-temporal patterns of nonlinear oscillations in a delayed neural network with unidirectional coupling, Nonlinearity 22 (2009), 975–1001.
[11] Yongli Song, J. Wei, Y. Yuan, Stability switches and Hopf bifurcations in a pair of delay-coupled oscillators, Journal of Nonlinear Science 17(2) (2007), 145-166.
[12] Yongli Song, M. Han, J. Wei, Stability and Hopf bifurcation analysis on a simplified BAM neural network with delays, Physica D 200 (3-4) (2005), 185-204.